A novel CMB component separation method: hierarchical generalized morphological component analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SZ and CMB reconstruction using Generalized Morphological Component Analysis

In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools to study and understand the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Re...

متن کامل

Component separation methods for CMB data

xvii 1 The microwave emissions of the sky 1 1.

متن کامل

Cmb Component Separation by Parameter Estimation

We propose a solution to the CMB component separation problem based on standard parameter estimation techniques. We assume a parametric spectral model for each signal component, and fit the corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio maps...

متن کامل

Blind Component Separation in Wavelet Space: Application to CMB Analysis

It is a recurrent issue in astronomical data analysis that observations are incomplete maps with missing patches or intentionally masked parts. In addition, many astrophysical emissions are nonstationary processes over the sky. All these effects impair data processing techniques which work in the Fourier domain. Spectral matching ICA (SMICA) is a source separationmethod based on spectral matchi...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2020

ISSN: 0035-8711,1365-2966

DOI: 10.1093/mnras/staa744